The Underinvestment Problem, Bond Covenants and Insurance

James R. Garven and Richard D. MacMinn December 1993 *Journal of Risk and Insurance*

Notation and Assumptions

- s denotes a state of nature and $[0, \overline{s}]$ denote the set of states at t=1;
- Property losses are sustained over the interval $[0,s^l)$, whereas no losses occur over $[s^l, \overline{s}]$.
- p(s) denote the price of a financial asset that pays one dollar if state s occurs and zero otherwise;
- I(s) = investment in state s required to reconstitute the asset;
- L(s) the property loss in state s.
- L(s) > I(s) > 0 for $s \in [0,s^l)$; i.e., rebuilding is assumed to always have a positive value.
- The investment decision is made after state s is revealed.

The Underinvestment Problem

- Suppose the firm issued bonds at t=0 with a promised payment of B^U dollars.
- Without covenants, underinvestment occurs in $U \in [0,s^u)$, since bondholders appropriate benefits while shareholders bear costs.
 - The boundary s'' is implicitly defined by the condition Π I(s'') = B''.
 - O Underinvestment reduces firm value by the risk-adjusted present value of the underinvestment cost.
 - o Myopic bondholders absorb this loss in corporate value in its entirety.
 - o Rational bondholders anticipate the underinvestment incentive when they price the bonds at t=0.

The Underinvestment Problem

The current market value of the debt issue is D'', where

$$D^{u} = \int_{0}^{s^{u}} p(s) \left[\Pi - L(s) \right] ds + \int_{s^{u}}^{\overline{s}} p(s) B^{u} ds. \tag{1}$$

Similarly, the stock market value S'' of the current shareholders is

$$S'' = \int_{s''}^{s'} p(s) \left[\Pi - I(s) - B'' \right] ds + \int_{s'}^{\overline{s}} p(s) \left[\Pi - B'' \right] ds, \qquad (2)$$

and the corporate value, given the underinvestment problem, is V'', where

$$V'' \equiv D'' + S''$$

$$= \int_{0}^{s''} p(s) [\Pi - L(s)] ds + \int_{s''}^{s'} p(s) [\Pi - I(s)] ds + \int_{s'}^{\overline{s}} p(s) \Pi ds.$$
(3)

The Underinvestment Problem

Let V^i denote the corporate value given a certain investment to reconstitute the asset. Then

$$V^{i} = \int_{0}^{s^{l}} p(s) \left[\Pi - I(s) \right] ds + \int_{s^{l}}^{\overline{s}} p(s) \Pi ds,$$

and the agency cost is $c'' = V'' - V'' = \int_0^{s''} p(s) \left[L(s) - I(s) \right] ds > 0$. (4)

Figure 1: The Agency Cost

By purchasing an insurance policy with a deductible of $d = I(s^u)$ dollars, reinvestment is ensured. The premium p^i is given by (5):

$$p^{i} = \int_{0}^{s^{u}} p(s) [I(s) - I(s^{u})] ds.$$
 (5)

The (insured) payoff to shareholders is given by (6):

$$\Pi - I(s) + \max\{0, I(s) - I(s^{u})\} - B = \begin{cases} 0 & s \in U \\ & . \end{cases}$$

$$(6)$$

$$\Pi - I(s) - B \quad s \in N$$

Figure 2: The Insurance Premium

By insuring against bankruptcy, the debt becomes safe; therefore,

$$D^{i} = \int_{0}^{\overline{s}} p(s) B^{u} ds = \rho B^{u}, \qquad (7)$$

where ρ is the sum of the basis stock prices, or equivalently, the price now of a safe asset which pays \$1 at t = 1. Comparing the insured with the uninsured debt value, the difference represents the sum of the underinvestment cost and the cost of the insurance policy; i.e.,

$$D^{i} - D^{u} = \int_{0}^{s^{u}} p(s) \left[B^{u} - (\Pi - L(s)) \right] ds$$

$$= \int_{0}^{s^{u}} p(s) \left[(\Pi - I(s^{u})) - (\Pi - L(s)) \right] ds$$

$$= \int_{0}^{s^{u}} p(s) \left\{ L(s) - I(s) + \left[I(s) - I(s^{u}) \right] \right\} ds$$

$$= c^{u} + p^{i}.$$
(8)

We endogenize decisions concerning the level of debt (B^i) and insurance deductible $(I(s^i))$. B^i is characterized in the following manner:

$$B^{c} = \begin{cases} \Pi - I(s) + [I(s) - I(s^{c})] & 0 < s < s^{c} \\ B^{c} & s^{c} < s < \overline{s} \end{cases}.$$

 B^{c} is implicitly defined by the financing condition given by (9):

$$D(B'') - [D(B') - p'] = 0. (9)$$

Let the state s^d be implicitly defined by the condition Π - $L(s^d) = B^c$. Then equation (9) may be equivalently expressed as (10):

$$\int_{\min\{s^d, s^u\}}^{s^u} p(s) \left[\Pi - L(s) - B^c \right] ds + \int_{s^u}^{\overline{s}} p(s) \left[B^u - B^c \right] ds$$

$$= \int_{0}^{\min\{s^d, s^u\}} p(s) \left[\min\{\Pi - I(s), B^c\} - (\Pi - L(s)) \right] ds. \tag{10}$$

This is shown graphically by Figure 3:

Figure 3: The Financing Condition

A bond/covenant scheme is only beneficial if the current shareholders stand to gain. Note the t=1 payoff to current shareholders is

$$\begin{cases} 0 & 0 < s < s^{c} \\ \Pi - I(s) - B^{c} & s^{c} < s < s^{l} \end{cases}.$$

$$(1 - B^{c}) & s^{l} < s < \overline{s}$$

It follows that the current shareholders' stock market value is S^{i} , where

$$S^{c} = \int_{s^{c}}^{s^{l}} p(s) \left[\Pi - I(s) - B^{c} \right] ds + \int_{s^{l}}^{\overline{s}} p(s) \left[\Pi - B^{c} \right] ds. \tag{11}$$

$$S^{c} - S'' = \int_{s^{c}}^{s^{n}} p(s) \left[\Pi - I(s) - B^{c} \right] ds + \int_{s^{n}}^{\overline{s}} p(s) \left[B^{n} - B^{c} \right] ds$$

$$= \int_{s^{c}}^{s^{n}} p(s) \left[\Pi - I(s) - \max \left\{ \Pi - L(s), B^{c} \right\} \right] ds$$

$$+ \int_{\min \left\{ s^{n}, s^{n} \right\}}^{s^{n}} p(s) \left[\left(\Pi - L(s) \right) - B^{c} \right] ds + \int_{s^{n}}^{\overline{s}} p(s) \left[B^{n} - B^{c} \right] ds$$

$$= \int_{s^{c}}^{s^{n}} p(s) \left[\Pi - I(s) - \max \left\{ \Pi - L(s), B^{c} \right\} \right] ds$$

$$+ \int_{0}^{\min \left\{ s^{n}, s^{n} \right\}} p(s) \left[\min \left\{ \Pi - I(s), B^{c} \right\} - \left(\Pi - L(s) \right) \right] ds \qquad (12)$$

$$= \int_{0}^{s^{n}} p(s) \left[L(s) - I(s) \right] ds = c^{n} > 0.$$

- The difference $S^{c} S^{u}$ is the value of the sum of the shaded areas labeled L and H in Figure 4.
- The value of the sum of the shaded areas labeled G and H represent the agency cost of the underinvestment problem c^u .
- By equation (10) and Figure 3, it follows that the value of the sum of the L and H areas is equal to the value of value of the sum of the G and H areas. Therefore, the bond\covenant package not only increases current shareholder value, but also entirely eliminates the agency cost of underinvestment.

Table 1
The Unlevered, Uninsured Firm

State	Pr(s)	П	L(s)	Vu(s) =	I(s)	Vr(s) =
				Π -L(s)		Π -I(s)
no loss	50%	\$1000	\$0	\$1000	\$0	\$1000
loss	50%	\$1000	\$800	\$200	\$600	\$400
value		\$1000	\$400	\$600	\$300	\$700
now						

Table 2
The Levered, Uninsured Firm (B = \$700)

State	Pr(s)	П	L(s)	Du(s)	Su(s)	I(s)	Dr(s)	Sr(s)
no loss	50%	\$1000	\$0	\$700	\$300	\$0	\$700	\$300
loss	50%	\$1000	\$800	\$200	\$0	\$600	\$400	\$0
value		\$1000	\$400	\$450	\$150	\$300	\$550	\$150
now								

Table 3

Levered. Insured Firm (Bc = \$500 and d = \$500)

State		Π	L(s)	I(s)	$p^{c}(s) =$	$\Pi^* = \Pi - I(s) +$	Dc(s	Sc(s)
					I(s)-d	pc(s))	
no loss	50%	\$1,000	\$0	\$0	\$0	\$1,000	\$500	\$500
loss	50%	\$1,000	\$800	\$600	\$100	\$500	\$500	\$0
value		\$1,000	\$400	\$300	\$50	\$750	\$500	\$250
now								

Table 4

Levered. Insured Firm (B1 = \$600 and d = \$400)

State		Π	L(s)	I(s)	pl(s) =	$\Pi^* = \Pi - I(s)$	Dl(s)	Sl(s)
					I(s)-d	+ pl(s)		
no loss	50%	\$1,000	\$0	\$0	\$0	\$1,000	\$600	\$400
loss	50%	\$1,000	\$800	\$600	\$200	\$600	\$600	\$0
value		\$1,000	\$400	\$300	\$100	\$800	\$600	\$200
now								